Current projects
Current publicly funded projects
2023
-
Quantum Measurement and Control for the enablement of quantum computing and quantum sensing
(Third Party Funds Single)
Term: 01/01/2023 - 31/12/2025
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
2022
-
Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen
(Third Party Funds Single)
Term: 01/01/2022 - 31/12/2024
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Innovative, smart electronic systems usually only become intelligent, i.e. smart, through networking and the use of AI. On the one hand, this entails the need for a much higher-performance connection of the components within the system, and on the other hand for high-performance networking of a large number of such systems. While the connection of the computing unit (DSP, FPGA or similar) to its periphery is crucial for the first aspect, a very high-performance connection structure between the computing unit and the interface to the transport network is particularly necessary for high-rate networking. Here, the interface often implements the transition from the electrical domain to optical transmission. In order to make the required data rates between the computing unit and the interface physically possible, new construction and connection technologies are required, together with new efficient connection structures. In particular, the enormous analog bandwidth of 110GHz required for this calls for new innovative approaches here.
Modern manufacturing technologies such as organic multi-chip modules (MCM) allow the necessary high degree of integration of a wide variety of components on a common system level. For many application areas, such as mobile communications and optical data communications, the connection of digital signal processors (DSPs) and memory blocks or interface components on a common carrier material (interposer) represents a decisive advantage. This is being investigated as part of the project. -
Flexible Elektronisch-Photonisch Integrierte Sensor Plattform II [EPIC-Sense II]
(Third Party Funds Group – Sub project)
Overall project: Electronic-Photonic Integrated Systems for Ultrafast Signal Processing
Term: since 01/09/2022
Funding source: DFG / Schwerpunktprogramm (SPP)This proposal aims to explore a scalable, two-stage electronic-photonic MIMO radar system in the millimeter-wave range. In phase I of SPP 2111, the coherent optical distribution of the local oscillator signal was already addressed as well as the broadband integration of an electronic-photonic FMCW radar front-end. The vision for Phase II of SPP 2111 is the extension of a monolithically integrated electronic-photonic FMCW radar system by a new frequency-division multiplexing approach, which is realized by a new additional optical data-bus transmitting a high data rate coding scheme. With the help of this additional coding, a large amount of coherent 2x2 radar modules can be differentiated, while concentrating the computationally intensive coding in a central node. Especially for the electro-optical interfaces, intensive research into new technologies of optical modulation methods and components is necessary in order to meet the challenging bandwidth requirements. -
Industrialisierbare Schlüsseltechnologien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen
(Third Party Funds Group – Overall project)
Term: 01/10/2022 - 31/03/2026
Funding source: BMBF / VerbundprojektMOTIVATION
Sixth-generationmobile communications (6G) will enable entirely new application scenarios inindustry, medical technology and everyday life. This will be accompanied by newand higher requirements for latency, the transmittable data rate, spatialresolution, as well as data processing and energy management of thecommunication systems, which cannot be met at present. A promisingtechnological solution is offered by the development of new radio frequenciesup to the terahertz (THz) range. This can enable extremely high data rates andhigh-resolution sensing. For the realization of 6G, it is therefore importantto develop energy-efficient THz receivers and transmitters with controllabledirectional characteristics, which have high signal quality and bandwidth.Among other things, optoelectronic technologies open up promising approaches tosolutions here.
OBJECTIVES AND APPROACH
In the project"Industrializable key technologies for energy-efficient Tbit transceiversin 6G mobile radio systems - ESSENCE-6GM", solutions are being researchedto realize transmit and receive modules for the frequency range just belowterahertz radiation (sub-THz), which will be a critical component of future 6Gsystems. Economic efficiency and environmental compatibility are the toppriorities for the technical implementation: the solutions must becost-effective to implement in future industrial series productions andsignificantly more energy-efficient in operation compared to today's solutions.The project specifically addresses the critical weak points of today'stransmitter and receiver systems: By introducing new concepts in analog anddigital conversion, circuitry and module integration, transmitter and receiverunits for sub-THz systems can be made more energy efficient and highperformance. At the end of the project, it is planned to demonstrate amulti-antenna system capable of transmitting data rates of up to one terabitper second beyond 10 meters in selected usage scenarios.
INNOVATIONS ANDPERSPECTIVES
The Essence-6GMproject is developing components that enable high-performance transmission inthe sub-THz range with high energy efficiency. Overall, the project is helpingto ensure that Germany plays a leading role in shaping 6G standards and thatthe share of key components for 6G systems manufactured in Europe is increased.This is an essential contribution to strengthening the technologicalsovereignty of Germany and Europe.
-
Intelligentes robustes 320 GHz Radar-Edge-Sensornetzwerk
(Third Party Funds Group – Overall project)
Term: since 01/07/2022
Funding source: BMBF / VerbundprojektMOTIVATION
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it also ensures a rapidly growing amount of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS projects is to provide application-specific highly innovative electronics to unlock these benefits.
OBJECTIVES AND APPROACH
The goal of the project is to develop radar sensors that can act as artificial sensory organs. The measurement frequency of 320 GHz enables high resolution. It is achieved by a new 90 nm BiCMOS semiconductor fabrication process. Basic circuitry, antenna concepts, and a 160 GHz communication interface for the radar modules are being explored. Attached to objects in large numbers and networked with each other, the sensors form a protective shell that can perceive its environment with the help of intelligent algorithms. The sensor data is distributed and processed in an energy-efficient manner both in the radar modules and in a central computing system. Data compression methods are also being developed for efficient data exchange. The functionality is being tested using automotive scenarios.
INNOVATIONS AND PERSPECTIVES
The protective shell represents a "radar skin" as an artificial sensory organ and holds high potential for future autonomously acting systems such as unmanned vehicles, drones, industrial or household robots. This will allow them to move around in the human environment and interact safely with humans as well as with other autonomous systems.
-
MQV Superconducting Qubits Quantum Computer Demonstrators
(Third Party Funds Single)
Term: 01/01/2022 - 31/12/2026
Funding source: Bundesministerium für Bildung und Forschung (BMBF)Motivation
Today, quantum computers are considered to be the computing machines of the future. They use so-called qubits instead of the conventional bits of classical computer technology. The special properties of these qubits allow the quantum computer to assume all states that can be represented with the qubits simultaneously, while conventional computers can only work with one of the combinations that can be represented by the available bits per computing step. Quantum computers can thus be used to solve tasks that conventional computers fail at. Processes at the molecular level can be simulated so that, for example, the mode of action of new active ingredients can be predicted for the pharmaceutical industry. Likewise, quantum computers can find ways to develop highly efficient battery storage or solve complex problems in traffic management.
Objectives and approach
The present collaborative project aims to build the demonstrator of a quantum computer based on superconducting circuits, as well as the peripherals necessary to interface the quantum computer to conventional computer systems. The work includes research into microwave circuits to control the qubits, research into integration methods for superconducting circuits, and extends to the development of customized compilers and runtime environments for the quantum computer. The associated quantum processor is expected to be able to compute with up to 100 qubits, and would thus be capable of representing ten to the power of thirty states simultaneously (which is about ten billion times the estimated number of stars in the universe).
Innovation and perspectives
The goal of the work is, among other things, to ensure reliable operation of such a quantum computer and, on the other hand, to create the periphery to make the computing power of this computer available to a broad group of users via cloud computing.
-
Terahertz Digital Chess-Board-Modulated Spread-Spectrum System for Radar and Communication Comprising 200 GHz Bandwidth
(Third Party Funds Group – Sub project)
Overall project: INtegrated TERahErtz sySTems Enabling Novel Functionality (INTEREST)
Term: since 01/01/2022
Funding source: DFG / Schwerpunktprogramm (SPP)TIEMPO proposes the realization of an I/Q transceiver chipset for spread-spectrum digital noise radar operating in the frequency range from 220 GHz to 420 GHz. This corresponds to a record bandwidth of 200 GHz. In this project we innovate on the idea of the frequency modulated continuous wave (FMCW) comb radar, by proposing a concept that can be viewed as a digital radar counterpart to a frequency comb radar. To achieve the extremely wide bandwidth we propose a novel system architecture implementing a “chess-board spectrum division”. Thanks to an elegant system level solution, a single oscillator at a fixed frequency is sufficient to generate five local oscillator (LO) carrier frequencies to cover the entire bandwidth. Furthermore, due to the high-speed I/Q mixed-signal components in combination with the “chess-board” concept, we reduce the number of required transmit/receive channels by two. This architecture can also be used for communication systems, as the digital sequence is generated externally.This extremely wide bandwidth imposes difficult challenges at the circuit design level, which is the main focus of this proposal: (1) I/Q data converters with 8-bit resolution, 20 GHz bandwidth, and 40 Gbps data-rate; (2) I/Q transmitter and receiver operating above 400 GHz; (3) LO signal generation to cover the entire bandwidth; (4) on-chip antennas with 200 GHz bandwidth and high efficiency. These operation frequencies are very close or above fmax of the technology intended for experimental validation, which is the 22 nm FD-SOI (Fully-Depleted Silicon-On-Insulator) CMOS process of Globalfoundries. This requires novel circuit and system level approaches to circumvent technology limitations. To our knowledge, this is the first digital spread-spectrum radar transceiver concept proposed in this frequency range, and the first operating over a bandwidth of 200 GHz. -
Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
(Third Party Funds Group – Sub project)
Overall project: Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
Term: 15/10/2022 - 14/10/2025
Funding source: BMBF / Verbundprojekt
2021
-
6G for Society and Sustainability
(Third Party Funds Group – Sub project)
Overall project: 6G Platform Germany
Term: 01/08/2021 - 31/07/2025
Funding source: Bundesministerium für Bildung und Forschung (BMBF)
URL: https://www.open6ghub.de/The Open6GHub will contribute to the development of an overall 6G architecture, but also end-to-end solutions in the following, but not limited to, areas: advanced network topologies with highly agile organic networking, security and resilience, THz and photonic transmission methods, sensor functionalities in the network and their intelligent use, as well as processing and application-specific radio protocols.
Research at FAU is conducted at the chairs of Prof. Franchi (ESCS), Prof. Weigel (LTE) and Prof. Vossiek (LHFT). At LTE research is focused on Joint-Communications-and-Sensing-Technologies and their application in resilient 6G campus networks, in close collaboration with ESCS and LHFT. Furthermore LTE designs integrated 140 GHz Device-to-Device communication chips.
The focus of ESCS is on JCAS, adaptive RAN architectures, protocol design, and waveform design for 6G. Additionally, ESCS explores topics of resilience-by-design and security-by-design.
-
Embedded Machine Learning
(Third Party Funds Single)
Term: 01/10/2021 - 30/09/2024
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018) -
Highly integrated localizable EMG beacon
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik - Sensortechniken und Datenanalyseverfahren zur empathokinästhetischen
Modellbildung und Zustandsbestimmung (EmpkinS)
Term: 01/01/2021 - 31/12/2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/In diesem TP sollen lokalisierbare Elektromyographie (EMG)-Funktransponder entworfen und realisiert werden, um erstmals Oberflächen-EMG-Daten synchron mit einer hochgenauen Funkortung in Echtzeit erfassen zu können. Hierfür wird ein 61-GHz-Transceiver in CMOS-Technologie entworfen, der das für das holografische Funkortungsverfahren notwendige phasenkohärente Signal aussendet und gleichzeitig extrem energiesparend ausgelegt werden muss. In einem weiteren Schritt soll der Transceiver in einer EMG-Sensorplattform integriert werden, die in Versuchsreihen an Probanden z. B. im Gesicht oder an den Beinen zur Analyse der Mimik oder des Ganges evaluiert werden soll.
2020
-
Frequenzselektive FM-Empfängerarchitekturen zur Steigerung der Sicherheit in der zivilen Luftfahrt
(Third Party Funds Single)
Term: 01/01/2020 - 30/06/2023
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)Passive radar technology represents a promising addition to conventionalradar systems. With increasing demands from economy and politics to completelyuse the limited spectrum of the frequency bands limited for telecommunicationsand location, the interest in this technology is increasing.
The aim of this research project is to establish the technology of locationusing passive radar technology in civil air traffic control in Germany and to opennew areas of application.
To improve the detection performance, various options for setting up afrequency-selective analog receiver for the FM band are being developed andintegrated into an existing passive radar system. For the highest possiblesensitivity, filtering in different stages of the receiver is essential.However, this must be evaluated together with the frequency-converting stagesin the overall system context in order not to degrade the signal quality,including through possible imperfections in the analog implementation. Furthermore,attention must also be paid to an optimal balance between circuit complexity,costs and compactness of the receiver. For this purpose, the receiverarchitectures are first examined in system simulations and evaluated regardingthe requirements from the application. This is followed by a prototypeconstruction of the most promising concepts with metrological verification ofthe individual components and evaluation of the entire system in a field test.
-
GRK 2495: Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
(Third Party Funds Group – Sub project)
Overall project: GRK 2495: Energy Conversion Systems - from materials to devices
Term: 01/07/2020 - 30/06/2024
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.igk2495.fau.de/projects/project-a-electronic-circuits-for-piezoelectric-arrays/Multiport and multimodal energy harvesting array systems require further circuit advancements. Wearables for health monitoring are an excellent energy harvesting example at raising interest. Further applications: smart city, building/bridge structure and environmental monitoring
- Should be energy autonomous for easy handling, no charger, always ready to go for 24/7 use
- SoA: Only single port harvesters! Require multiport harvesters for multiple asynchronous energy sources!
- Multimodal harvesting (pressure, solar, thermal,…) and arrays increase availability of energy
- Energy harvesting at high conversion efficiency needed
- Provision of energy for: (i) local sensor acquisition, (ii) local data processing, and (iii) Wireless connectivity, WAN needs more energy than BAN
- Wireless connectivity BAN (Body Area Network, e.g. Bluetooth) replaced by WAN (Wide Area Network, cellular IoT)
The primary research goal is the development of improved circuit design for multiport harvesters dealing with asynchronous energy sources in a piezo array
- Can the piezo elements be simultaneously used as sensors and energy providers?
- How to deal with asynchronous energy sources?
- How to ensure high availability and stability of energy?
- How to increase conversion efficiency?
-
Peilalgorithmen und gehärtete Hardware (VPX-GPU/FPGA) für den Grenz- und Inlandsschutz
(Third Party Funds Single)
Term: 01/11/2020 - 31/10/2023
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Systemen- abgesehen vom Preis - eine eher untergeordnete Rolle, da man dieseInfrastruktur vergleichsweise einfach bereitstellen kann. Bei mobilen Systemenhingegen stößt man sehr schnell an Grenzen, die teils durch die mobilePlattform selbst (u.a. Landfahrzeug, Schiff, Flugzeug) und teils durch denEinsatzfall bestimmt werden. Mit verschiedenen Mitteln und unter Hinnahmegewisser Einschränkungen kann man gute Peilanlagen auch auf mobilen Plattformeneinsetzen, allerdings treibt das den Aufwand und die Kosten immens in die Höhe.
Das Projekt soll einemögliche Implementierung mobiler Peilsysteme analysieren, erforschen underproben. Hierfür werden verschiedene Hardware-Lösungen verifiziert undverglichen. Zudem werden innovative Algorithmen entwickelt, die für mobileSystem mit weniger performanter und weniger effizienter Hardware zugeschnittensind, um ein sowohl mobiles als auch möglichst effizientes System zu erhalten.Hierzu werden in diesem Projekt hochspezialisierte Hardware wie FPGAs oder GPUsverwendet, um die Systeme effizienter, kleiner und leichter zu machen.
2019
-
Radarsysteme bei 140 GHz in 22 nm FDSOI CMOS für genaue Gestenerkennung mit kompakten Abmessungen, hoher Energieeffizienz und digitaler Signalgenerierung
(Third Party Funds Single)
Term: 01/10/2019 - 30/09/2023
Funding source: Bundesministerium für Bildung und Forschung (BMBF)